In August of 2005, ASTM (American Society for Testing and Materials) updated ASTM F 2503 “Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment”. New marking requirements for devices used in MR environments define a device as being MR conditional if “the device has been demonstrated to pose no known hazards in a specified MR environment with specified conditions of use.”
Typical Policy Regarding Use of Hearing Protection During an MRI Scan Procedure
Policy: The MRI environment is unique and can be very loud. The primary source of noise in an MRI scanner suite is movement of the gradient coils due to rapid alterations in their electrical currents. This noise is often referred to as knocking or tapping, can cause individuals to feel uncomfortable, and may even cause temporary hearing loss. The American College of Radiology (ACR) guidelines state: “Hearing protection is required for all patients studied on MR imaging systems capable of producing sound pressures that exceed 99 dB(A). The International standard on this issue (IEC 60601-2-33: ‘‘Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis’’), also states that, for all equipment capable of producing more than an A-weighted r.m.s. sound pressure level of 99dB(A), hearing protection shall be used for the safety of the patient and that this hearing protection shall be sufficient to reduce the A weighted r.m.s. sound pressure level to below 99 dB(A).” (1) ALL patients undergoing an MRI procedure shall use one of the following methods of hearing protection: • Ear plugs • Headphones • Ear muffs • Washcloths, towels, or sponges packed next to the ears for hearing protection • Other devices used to muffle acoustic noise reaching the patient’s ears (2) Hearing protection is NOT optional even if the patient wishes to decline use. If the patient declines use, MRI will not be performed. (3) Visitors or hospital staff that must be in the MRI suite during the procedure must also use ear plugs or other hearing protection. Developed By: MRI Leadership, Duke University Hospital Policy Primary: Director of MRI, Duke University Hospital Scheduled Review Date: 12/2016
Acoustic Noise and MRI Procedures
Various types of acoustic noise are produced during the operation of an MR system. Problems associated with acoustic noise for patients and healthcare professionals include annoyance, verbal communication difficulties, heightened anxiety, temporary hearing loss and, in extreme cases, the potential for permanent hearing impairment.
Acoustic noise may pose a particular problem to specific patient groups. For example, patients with psychiatric disorders may become confused or suffer from increased anxiety as the result of exposure to loud noise. Sedated patients may experience discomfort in association with high noise levels.
HEARING AND THE IMPACT OF ACOUSTIC NOISE
The human ear is a highly sensitive wide-band receiver, with the typical frequency range for normal hearing being between 20-Hz to 20,000-Hz. The ear does not tend to judge sound powers in absolute terms, but assesses how much greater one power is than another. The logarithmic decibel scale, dB, is used when referring to sound power.
Noise is defined in terms of frequency spectrum (in Hz), intensity (in dB), and time duration. Noise can be steady-state, intermittent, impulsive, or explosive. Transient hearing loss may occur following exposure to loud noise, resulting in a temporary threshold shift (i.e., a shift in audible threshold). With regard to acoustic noise associated with MR imaging, Brummett et al. reported temporary shifts in hearing thresholds in 43% of the patients scanned without ear protection and patients with improperly fitted earplugs. Recovery from the effects of noise occurs in a relatively short period of time. However, if the noise insult is particularly severe, full recovery can take up to several weeks. If the noise is sufficiently injurious, a permanent threshold shift at specific frequencies may occur.
MRI-RELATED ACOUSTIC NOISE
The gradient magnetic field is the main source of acoustic noise associated with an MR procedure. This noise occurs during the rapid alterations of currents within the gradient coils. These currents, in the presence of the strong static magnetic field of the MR system, produce significant (Lorentz) forces that act upon the gradient coils. Acoustic noise, manifested as loud tapping, knocking, chirping, or squeaking sounds, is produced when the forces cause motion or vibration of the gradient coils as they impact against their mountings which, in turn, flex and vibrate.
Alteration of the gradient output (rise time or amplitude) by modifying MR imaging parameters causes the acoustic noise to vary. Noise tends to be enhanced by decreases in section thickness, field of view, repetition time, and echo time. In addition to dependence on imaging parameters, acoustic noise is dependent on the MR system hardware, construction, and the surrounding environment. Furthermore, noise characteristics have a spatial dependence. For example, noise levels have been found to vary by as much as 10 dB as a function of patient position along the bore of the MR system. The presence and size of the patient may also affect the level of acoustic noise.
CHARACTERISTICS OF MR SYSTEM-RELATED ACOUSTIC NOISE
Gradient magnetic field-induced noise levels have been measured during a variety of pulse sequences for MR systems with static magnetic field strengths ranging from 0.35 to 4-Tesla. For example, Hurwitz et al. reported that the MR imaging-related sound levels varied from 82 to 93 dB on the A-weighted scale and from 84 to 103 dB on the linear scale.
Later studies performed using a variety of MR parameters including “worst-case” pulse sequences that applied multiple gradients simultaneously (e.g., three-dimensional, fast gradient echo techniques) reported that these are among the loudest sequences, with acoustic noise levels that ranged from 103 to 113 dB (peak) on the A-weighted scale.
Additional studies measured acoustic noise generated by echo planar imaging (EPI) and fast spin echo sequences. Echo planar sequences tend to have extremely fast gradient switching times and high gradient amplitudes. Shellock et al. reported high levels of noise ranging from 114 to 115 dBA on two different high field strength (1.5-Tesla) MR systems tested when running EPI sequences with parameters chosen to represent “worst-case” protocols. At 3-Tesla, Hattori et al. recorded sound levels that ranged from 126 to 131 dB on a linear scale, recommending the use of both earplugs and headphones for ear protection relative to the use of 3-Tesla MR systems when certain pulse sequences are used.
ACOUSTIC NOISE AND PERMISSIBLE LIMITS
In general, acoustic noise levels recorded in the MR environment have been below the maximum limits permitted by the Occupational Safety and Health Administration of the United States. This is particularly the case when one considers that the duration of exposure is an important physical factor that determines the effect of noise on hearing.
The U.S. Food and Drug Administration released guidelines for acoustic noise levels that should not be exceeded in association with the operation of MR systems, as follows:
Sound Pressure Level – Peak unweighted sound pressure level greater than 140 dB. A-weighted root mean square (rms) sound pressure level greater than 99 dBA with hearing protection in place.
While the acoustic noise levels recommended for patients undergoing MR procedures on an infrequent and short-term basis may appear to be somewhat conservative, they are deemed appropriate when one considers that individuals with underlying health conditions may have problems with noise at certain levels or frequencies. Acoustic noise produced during MR procedures represents a potential risk to such patients. As previously mentioned, the possibility exists that substantial gradient magnetic field-induced noise may produce hearing problems in patients who are susceptible to the damaging effects of loud noises.
The exposure of staff and other healthcare workers in the MR environment is also a concern (e.g., those involved in interventional MR procedures or who remain in the room for patient management reasons). Accordingly, if loud noises exist in the MR environment, staff members should routinely wear ear protection if they remain in the room during the operation of the scanner. In the United Kingdom, guidelines issued by the Department of Health recommend hearing protection be worn by staff exposed to an average of 85 dB over an eight hour day.
ACOUSTIC NOISE CONTROL TECHNIQUES
Passive noise control. The simplest and least expensive means of preventing problems associated with acoustic noise during MR procedures is to encourage the routine use of disposable earplugs or headphones or preferably, both. Therefore, for MR systems that generate substantial acoustic noise, patients should be required to wear these protective devices.
Unfortunately, passive noise control methods suffer from a number of limitations. For example, these devices hamper verbal communication with patients during the operation of the MR system. Additionally, standard earplugs are often too large for the ear canal of adolescents and infants. Importantly, passive noise control devices offer non-uniform noise attenuation over the hearing range. While high frequencies may be well attenuated, attenuation is often poor at low frequencies. This is problematic because, for certain pulse sequences, the low frequency range is where the peak MR imaging-related acoustic noise is generated.
OTHER SOURCES OF MR SYSTEM-RELATED ACOUSTIC NOISE
RF hearing. When the human head is subjected to pulsed radiofrequency (RF) radiation at certain frequencies, an audible sound perceived as a click, buzz, chirp, or knocking noise may be heard. This acoustic phenomenon is referred to as “RF hearing”, “RF sound” or “microwave hearing”.
Thermoelastic expansion is believed to be responsible for the production of RF hearing, whereby there is absorption of RF energy that produces a minute temperature elevation (i.e., approximately 1 x 10-6 degrees C) over a brief time period in the tissues of the head. Subsequently, a pressure wave is induced that is sensed by the hair cells of the cochlea via bone conduction. In this manner, a pulse of RF energy is transferred into an acoustic wave within the human head and sensed by the hearing organs.
With specific reference to the operation of MR scanners, RF hearing has been found to be associated with frequencies ranging from 2.4- to 170-MHz. The gradient magnetic field-induced acoustic noise that occurs during an MR procedure is significantly louder than the sounds associated with RF hearing. Therefore, noises produced by this RF auditory phenomenon are effectively masked and not perceived by patients. Currently, there is no evidence of any detrimental health effect related to the presence of RF hearing.
Noise From Subsidiary Systems. Patient comfort fans and cryogen reclamation systems associated with superconducting magnets of MR systems are the main sources of ambient acoustic noise found in the MR environment. Acoustic noise produced by these subsidiary systems is considerably less than that caused by gradient magnetic fields.
[*Portions of this content were excerpted with permission from McJury M. Acoustic Noise and Magnetic Resonance Procedures, In: Magnetic Resonance Procedures: Health Effects and Safety, FG Shellock, Editor, CRC Press, Boca Raton, FL, 2001 and McJury M, Shellock FG. Acoustic noise and MR procedures: A review. Journal of Magnetic Resonance Imaging 12: 37-45, 2000. Reviewed and updated 2011.]
REFERENCES
• Bandettini PA, et al. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 1998;39:410-416.
• Brummett RE, Talbot JM, Charuhas P. Potential hearing loss resulting from MR imaging. Radiology 1988;169:539-540.
• Bowtell RW, Mansfield PM. Quiet transverse gradient coils: Lorentz force balancing designs using geometric similitude. Magn Reson Med 1995;34:494-497.
• Chaplain GBB. Anti-noise: the Essex breakthrough. Chart Mech Engin 1983;30:41-47.
• Chen CK, Chiueh TD, Chen JH. Active cancellation system of acoustic noise in MR imaging. IEEE Trans Biomed Engin 1999;46:186-190.
• Cho ZH, et al. Analysis of acoustic noise in MRI. Magn Reson Imaging 1997;15:815-822.
• Counter SA, Olofsson A, Grahn, Borg E. MRI acoustic noise: sound pressure and frequency analysis. J Magn Reson Imaging 1997;7:606-611.
• Elliott SJ, Nelson Active noise control. IEEE Sign Proceed Magn 1983;12-35.
• Elder JA. Special senses. In: United States Environmental Protection Agency, Health Effects Research Laboratory. Biological Effects of Radio frequency Radiation. EPA-600/8-83-026F, Research Triangle Park, 1984; pp. 570-571.
• Goldman AM, Gossman WE, Friedlander PC. Reduction of sound levels with anti-noise in MR imaging. Radiology 1989;173:549-550.
• Hall DA, et al. Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. J Acoust Soc Am. 2009;125:347-59.
• Hattori Y, Fukatsu H, Ishigaki T. Measurement and evaluation of the acoustic noise of a 3 Tesla MR scanner. Nagoya J Med Sci. 2007;69:23-28.
• Hedeen RA, Edelstein WA. Characteristics and prediction of gradient acoustic noise in MR imagers. Magn Reson Med 1997;37:7-10.
• Hurwitz R, Lane SR, Bell RA, Brant-Zawadzki MN. Acoustic analysis of gradient-coil noise in MR imaging. Radiology 1989;173:545-548.
• International Commission on Non-Ionizing Radiation Protection (ICNIRP) Statement, Medical magnetic resonance procedures: protection of patients. Health Physics 2004;87:197-216.
• Leithner K, et al. Psychological reactions in women undergoing fetal magnetic resonance imaging. Obstet Gynecol. 2008;111(2 Pt 1):396-402.
• Mansfield PM, Glover PM. Beaumont J Sound generation in gradient coil structures for MRI. Magn Reson Med 1998;39:539-550.
• Mansfield PM, et al. Active acoustic screening: design principles for quiet gradient coils in MRI. Meas Sci Technol 1994;5:1021-1025.
• McJury MJ. Acoustic noise levels generated during high field MR imaging. Clinical Radiology 1995;50:331-334.
• McJury M. Acoustic Noise and Magnetic Resonance Procedures. In: Magnetic Resonance Procedures: Health Effects and Safety. FG Shellock, Editor, CRC Press, Boca Raton, FL, 2001.
• McJury M, Blug A, Joerger C, Condon B, Wyper D. Acoustic noise levels during magnetic resonance imaging scanning at 1.5 T. Brit J Radiol 1994;413-415.
• McJury M, Shellock FG. Acoustic noise and MR procedures: A review. J Magn Reson Imaging 2000;12:37-45.
• McJury M, et al. The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results. Magn Reson Imaging 1997;15:319-322.
• Melnick W. Hearing loss from noise exposure. In: Harris CM, ed. Handbook of Noise Control. New York: McGraw-Hill, 1979; pp. 2.
• Miller LE, Keller AM. Regulation of occupational noise. In: Harris CM, ed. Handbook of noise control. New York: McGraw-Hill, 1979; pp. 1-16.
• Moelker A, et al. Verbal communication in MR environments: effect of MR system acoustic noise on understanding. Radiology 2004;232:107-113.
• Moelker A, Pattynama PM. Acoustic noise concerns in functional magnetic resonance imaging. Human Brain Mapping 2003;20:123-141.
• More SR, Lim TC, Li M, Holland CK, Boyce S, Lee J-H. Acoustic noise characteristics of a 4 Tesla MRI scanner. Journal of Magnetic Resonance Imaging 2006;23:388-397.
• Peelle JE, et al. Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing. Neuroimage. 2010;52:1410-9.
• Philbin MK, Taber KH, Hayman LA. Preliminary report: changes in vital signs of term newborns during MR. Am J Neuroradiol 1996;17:1033-6.
• Quirk ME, Letendre AJ, Ciottone RA, Lingley JF. Anxiety in patients undergoing MR imaging. Radiology 1989;170:464-466.
• Reeves MJ, et al. Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiology. 2010 [Epub ahead of print]
• Robinson DW. Characteristics of occupational noise-induced hearing loss. In: Effects of Noise on Hearing. Henderson D, Hamernik RP, Dosjanjh DS, Mills JH, Editors. Raven Press, New York, 1976; pp. 383-405.
• Roschmann P. Human auditory system response to pulsed radio frequency energy in RF coils for magnetic resonance at 2.4 to 170 MHz. Magn Reson Med 1991;21:197-215.
• Ruckhäberle E, et al. In vivo intrauterine sound pressure and temperature measurements during magnetic resonance imaging (1.5 T) in pregnant ewes. Fetal Diagn Ther. 2008;24:203-10.
• Schmitter S, Bock M. Acoustic noise-optimized verse pulses. Magn Reson Med. 2010 [Epub ahead of print]
• Segbers M, et al. Shaping and timing gradient pulses to reduce MRI acoustic noise. Magn Reson Med. 2010;64:546-53.
• Shellock FG, Kanal E. Policies, guidelines, and recommendations for MR imaging safety and patient management. J Magn Reson Imaging 1991;1:97-101.
• Shellock FG, Morisoli SM, Ziarati M. Measurement of acoustic noise during MR imaging: Evaluation of six “worst-case” pulse sequences. Radiology 1994;191:91-93.
• Shellock FG, et al. Determination of gradient magnetic field-induced acoustic noise associated with the use of echo planar and three-dimensional fast spin echo techniques. J Magn Reson Imaging 1998;8:1154-1157.
• Strainer JC, et al. Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. Am J Roentgenol 1997;18: 601-610.
• Tomasi DG, Ernst T. Echo planar imaging at 4 Tesla with minimal acoustic noise. J Magn Reson Imaging 2003;128-130.
• Ulmer JL, et al. Acoustic echo planar scanner noise and pure tone hearing thresholds: the effects of sequence repetition times and acoustic noise rates. J Comp Assist Tomogr 1998;22:480-486.
• U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Radiological Devices Branch, Division of Reproductive, Abdominal, and Radiological Devices, Office of Device Evaluation. Guidance for Industry and FDA Staff. Criteria for significant Risk Investigations of Magnetic Resonance Diagnostic Devices, July 14, 2003.
Reviews
There are no reviews yet.